Final Worksheet

1. Create a truth table for $(P \to (\neg Q \lor R)) \land (R \lor Q)$

2. Let x, y be real number, show that if $x \neq y$, then $2x + 4 \neq 2y + 4$

3. Let n be an integer, prove that if 3n is odd, n is odd

4. Consider the statement "the equation $x^2 + 2x = 15$ has a unique solution", describe a universe in which this statement is true

5. $\forall x, (x \in A \iff \exists n, (n \in \mathbb{Z} \land x = 2n))$

Express the above statement in a sentence and describe what is this set A

6. Prove if the product, *xy*, is not a rational number, then *x* or *y* must be an irrational number

- 7. Provide counterexample to the following statements:
 - a. Every odd number is prime

b. Every prime number is odd

c. For every real number x, we have $x^2 > 0$

d. For every real number $x \neq 0$, we have $\frac{1}{x} > 0$

8. Let *A*, *B*, *C* be the following sets:

$$A=\{(x,y)\in\mathbb{R}^2\colon x-y=0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$$

$$C = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 0\}.$$

Prove that $A \cup B = C$

9. Prove that $\{n^2 + n + 1 : n \in \mathbb{N}\} \subseteq \{2n + 1 : n \in \mathbb{N}\}$

10. Prove or disprove: If $A \cup B = A \cup C$, then B = C

11. Prove $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

12. Write the set $\mathcal{P}(\{\emptyset, \{\emptyset\}\})$ explicitly

- 13. Define three relations on \mathbb{R} by $x \sim y$ if and only if there exists $n \in \mathbb{Z}$ such that
 - a. $x, y \in [n, n+1]$
 - b. $x, y \in [n, n+1)$
 - c. $x, y \in [n, n+2)$

Prove or disprove each of the above relations is an equivalence relation.

14. Define relation on \mathbb{R} by $x \sim y$ if and only if there exists $n \in \mathbb{Z}$ such that $x, y \in [n, n+1)$. Prove that the indexed collection of equivalence classes $\{C_x : x \in \mathbb{R}\}$ is a partition of \mathbb{R} 15. Define $f: \mathbb{Z} \to \mathbb{N}$ by f(x) = |x|, prove or disprove that f is a function

16. Define
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 by $f((x, y)) = x$

a. Prove or disprove that f is injective (1-1)?

b. Prove or disprove that f is surjective (onto)?

17. Let A be a nonempty set with |A|=n and let $\alpha \in A$. Prove that $A\setminus \{\alpha\}$ is finite and $|A\setminus \{\alpha\}|=n-1$

18. Prove $|\mathbb{N}| < |\mathbb{R}|$

19. Prove $|\mathbb{Z}| \leq |\mathcal{P}(\mathbb{Z})|$

(Note: This statement is not equivalent to $|\mathbb{Z}| < |\mathcal{P}(\mathbb{Z})|$)